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TRAVELING WAVES IN THE SUPERSONIC

FLUTTER PROBLEM OF PANELS OF FINITE LENGTH

A. I. MOVCHANAND A. A. MOVCHAN

Academy of Sciences, U.S.S.R.

Some peculiarities are considered of the shapes of natural plate oscillations,

which may be defined by means of the well-known equation

a4w a4w a2w a2w a2w

D 	 + 2ax22 + + A — 	 + N2 -- + (2 (1)
ax4 ay ay4 at2  0X2 ay2

in the assumption that a plate of thickness  h  occupies a region shaped as an

unlimited strip 0 <  x < a  or a rectangle O < < a, 0 < y < h,  and the load

Q is given by the well-known formula of the piston theory'

Q
pox ( 	 aw)

- c — (2)
co ax at

(the plate moves in a gas in the direction of the positive mis x). Then the follow-

ing dimensionless quantities are introduced

y W ma4 (3)
a'  b' h'

t/

for which the former designations  x, y, t,  are retained, and the perturbations

of the plate are considered, represented as

W (r,  y, t) = w(x, t)f(y) (4)

---- 1 or f(y) = sin irny, n = 1, 2, • • •
(5)

w(r, = X (x)e"

The right-hand side of Eq. (5), generally speaking, may prove to be the com-

plex function of the real variables x,t, for example, as a result of the complexity

of the frequency co

w = p iq (6)
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In Eq. (4) instead of W(x, 1) we substitute the functions

w(x, = BeX (x)eu.', w(x, t) = 1 mX (x)e" (7)

and Obtain the real perturbations, which at q 0 we designate as the natural

plate oscillations. With the selection of the functions f(y) assumed, the peculiari-

ties of the natural oscillations of interest to us are determined by the functions

[Eq. (7)1, which, therefore, we shall also designate as the natural plate oscillations.

It is easy to see that every function X(x), included in the right-hand side of

[Eq. (5)1, is an eigenfunction (nontrivial solution) of the boundary-value problem

d4X U 2 dX  0
— - — 2kr +kirX—A =XX
dx4 dx2 dx (8)

L(X) = 0, I = 1, 2, 3, 4

where L(X) = 0 designate the linear homogeneous boundary conditions on

the edges x = O,  z = 1, and the dimensionless parameters k, A, X°, are deter-

mined by the equalities

2 v,n2a2 a2A a Iv 2
k = - n1, n1 = n 9 =

9 - 


, a3poX
= - C7

DC0

2 2=ir 4 [41 ni2(n,02)]
(9)

a2 pox
X = — (w2 Bw), B = ,--

'DA ro

Combining
4

_v(z)= E ('X3 (x, k, .1, X°) (10)
)=I

of the four linearly independent solutions .Vi(x, k, A, Xo) of Eq. (8) and satisfying

the boundary conditions

4
E  i(X))C , = 0, i = 1, 2, 3, 4 (11)

we obtain for the determination of the eigenvalues X° the equation

L1(X') LI (X2) L1(X3) L1(X4)

F(k, .1, X°)
	 L2(X') L2(X2) L2(X3) L2(X4)

= 0 (12)


L3(X9 L3(X2) L3(X3) L3(X4)

L4(X') L4(X2) L4(-V) L4(X4)

the left-hand side of which is an integral analytical function of the parameters


k, A, X°. To each root X° of Eq. (1'2) corresponds at least one solution of the
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system [Eq. (11)] and the eigenfunction [Eq. (10)]. The frequencies wcorrespond-

ing to this function are found from the quadratic equation co2 Bco + X =

w =  _ _ _ x (13)
9 4

If the eigenvalue X0 is a simple root of Eq. (12), one eigenfunction X(x)
corresponds to it (to within the constant). If the eigenvalue X° is a double root

of Eq. (12) and the matrix rank of Eq. (12) is equal to two, two linearly inde-

pendent functions correspond to the eigenvalue X°. If however, the matrix

rank of Eq. (12) is equal to three, only one eigenfunction X(.r) corresponds to

the eigenvalue X°. In the latter case, for the sake of completeness, together

with the solution [Eq. (5)], it is also necessary to consider the solution

w(x, t) = [X (1)(x) + IX (x)le' (14)

where X ,n(x) is a function, adjoint to the eigenfunction X(4.2,3 For example,

for a hinged panel with k = — 2.5, A = 0 to the double eigenvalue

9 4
X 1 ° = X2° = 	 (15)


4

correspond two eigenfunctions4

(x) = sin rx,  X2(x)  = sin 27rx (16)


An example of employing adjoint functions is given in Ref. 5.
Every eigenfunction X(x) of the boundary problem [Eq. (8)] may be presented

as

X(x) = X,(x)  iX2(x)  (17)

where X1(x), X2(x) are real functions (the case of the equality to zero of one

of the functions Xi(x) or X2(x) is not excluded.) The zeros of the eigenfunction
[Eq. (17) 1separate the segment 0 <  z  < 1 into a finite number of intervals, in

each of which the function [Eq. (17)] is represented trigonometrically as

X(x)  = = (x)f[cos st(x) sin ‘G(x)]

X( x) ; = X12(z ) X22(x)

cos ik(x) = XI (x )/JX(x), sin 1,t(x) =  X2(x )/ X(x)1

In each of these intervals the argument %P(x)is a continuously differentiable

function x; (x) is not defined in the interval boundary points and may have

discont inuities.
Assume the functions X1(x), X2(.4 are linearly dependent in the eigenfunction

[Eq. (17)]. In this case we designate the eigenfunction as a real function (con-

ditionally). It is easy to see that the relation ;,/,(z)  = Const. is satisfied for the

real (as indicated) eigenfunct ion at every interval of the continuity 1,G(x).
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Assume the functions X1(x), X2(x) are linearly independent in the eigenfunc-
tion [Eq. (17)]. In this case we designate the eigenfunction as a complex function.
For the complex (as indicated) eigenfunction, the relation ik(x) Const. is
satisfied at every interval of the continuity ),/,(x). Actually, otherwise at some of
the intervals of the continuity tk(x) the following relation would be satisfied

X(x)  =  Xl(x)  iX2(x)  :.X(x), (el je2)

where c, = cos  tk(x)  and c2 = sin 44x) are real constants, not simultaneously
equal to zero, and the functions

X1(x)  =  c1W(x)I,  X2(x) = e2  X(x),.

•oul (I prove to be linearly dependent in the examined interval, which comprises
a part of the span 0 <  x <  1. This, however, is impossible, since the functions
X1(x)„1:2(x) are assumed to be linearly independent in the span U <  x <  1
and are solutions of the same linearly ordinary differential [Eq. (6)].

Substituting Eqs. (6) and (8) in Eq. (5), we obtain

w(x, t) = X(x) e4(r)*(1'+'''''

It is obvious from here that the natural oscillations [Eq. (7)] are described by the
equalities

w(x, t) = (x) cos [11. (x) qt]ep)
(20)

w(x, t) = X( x ) 1  sin [4,(x) qt]eFe

The relation 1,1/(x) = Const. is satisfied for the real eigenfunction X( x ) at the
intervals of the continuity tk(x), which gives grounds in this case to refer to the
natural oscillations [Eq. (20)] as standing waves.

For the complex eigenfunction  X (x)  the relation  1,/,(x)  Const. is satisfied
in the intervals of the continuity ik(x), as proven. The analogy with the functions

cos (Cx  qt)  sin  (e x qt) (C = (' onst.) (21)

in this case gives grounds to refer to the natural oscillations [Eq. (20)] as traveling
waves. The propagation velocity of the traveling waves [Eq. (21) 1 is given by
the formula

I = — (IX  (22)

The dimensionless propagation velocity of the traveling waves, Eq. (20), is de-
termined from the formula

(x) = — q / (d' (x) /dx)  (23)

The dimensional velocity is obtained by multiplying Eq. (23) by

a /
pa4
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Unlike Eq. (22), the velocity of the traveling waves [Eq.  (23)]  at dIk(x)/dx
Const. is different at different points of the plate.

Only the real eigenfunction  X (x) and the natural oscillations, Eq.  (20),  in the

form of standing waves can correspond to the real single eigenvalue X° of the

boundary problem [Eq. (8)]. To the real eigenvalue X° may correspond the

complex eigenfunction [Eq. (17)1when, and only when . X° is a multiple root of

Eq.  (1`2)  and when at least two linearly independent eigenfunctions correspond

to it. Equations (15), (16) may serve as illustrations; the linear combination

X(x) = 0.3 sin t2rx  i sin rx

is the complex eigenfunction, corresponding to the real eigenvalue [Eq. (15)], for

which from Equations (19), (20) we obtain (with q  0) the natural oscillations

in the form of waves traveling on the plate.

w(x, t) = sin 7r.r N/ 1 + cos" 7r.rcos [4.(x)

w(x, t)  = sin 7rx -\./ 1 + cos' Tx sin bk(x)

_ cos j rx
cos




v/ 1 -A-COS-
.9 9

 ri

1
sin tk(x) — - 


.\,/ 1 + cos'  7rx

The graph of the function 44.19is shown in Fig. 1.
The conditionless complex eigenfunction [Eq. (17)] and the natural oscillations

[Eq. (20)] in the form of waves traveling on a plate correspond to the complex

eigenvalue  X°of the boundary problem [Eq. (8)]  (X° = Xcii° iX(2)°, X(2)0 0).
The flutter of the plates (natural oscillations [Eq. (20)] in the case p >  0),

detectableon the basis of Eqs. (1) and (2), is possible only for the complex eigen-
values X° of the boundary problem [Eq. (8)], which actually exist with corre-

sponding values of velocity Am. Consequently, natural oscillations in the form

of traveling waves, encountered for real, as exceptions, are typical phenomena

2

0

Fig.I.
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for plate flutter, which is confirmed by experiments.7'8 The theoretical quanti-

tative investigation of the character of traveling waves, Eq. (20), with flutter

which are, as a rule, associated with extremely cumbersome computations,

became possible relatively recently due to the employment of speed computers.

Except for the case when the matrix rank of Eq. (12) is less than three, the

eigenfunction [Eq. (10)1 may be found by means of the formula

X (x) = cle-" sin 0x. C2C-'' cos 0x
(24)

c3er sh N/ 02 —  2a2 2kr2  x c4e." eh N/ 02 —  2a2 2kr-2 x

For the case of hinged edges x  = 0, 1 the constants a, 0 satisfy the system of

Equations (2(2), (23) in Ref. 4, and the constants have the value

cl = c.`"[a N/ 02 — 2a2 2kr2 ch N/ 02 — 2a2 2kr2

(a2 _ 02 _ sh 02 —  2a2 2k71-2]

a .N./ 02 2a2 2k7r2 c-" cos 0  (25)

e2 = a (e-' V 02 — 2a2 2k7r2 sin 0 —  sh .N/ 02 — 2a2  2kr2  e • (3)

C3 e-a [ (02 a2 kir2) s in _
a0 cos 0] +  afie ch  02 — 2a2 2k7r2

C9 = C2

For the case of clamped edges x  = 0,1 Eq. (2.2) in Ref. 4 should be replaced by

the equation given in Ref. 4 on p. '24'2, and the constants C; have the value

ej = (e2" ch .,\/ # 2 2,2 2kr2 — cos /3) •- ,/ _ 2,2 + 21,771-2

— 9ac2'  sh N/ — 2a2 2k7r2

C2 = 02 — 2a2 26r2 sin 0 —  0c2' sh N/ 02 —  2a2 2k7r2 (26)

c3 = 0 cos 0 +  2a sin 0 —  0e2" .\/ j32 — 2a2 2k72

C4 = C2

The process of finding the eigenfunctions consists, first of all, in the solution

of quite complex transcendental equations with respect to the parameters a, 0

(which are complex numbers for a complex X°) and in subsequent computations

according to formulas of the type (‘24), (25), and (26). In the formulas indicated

it is advantageous to regroup terms in order to preserve accuracy, which is lost

during the subtraction of numbers large in modulus but di ffering little between

themselves.



SUPERSONIC FLUTTER PROBLEM OF PANELS OF FINITE LENGTH 729

Below are presented results of the computation of oscillations of a plate
clamped at the edges x = 0, 1, in the case k = 0.

The real eigenfunctions, corresponding with A = 0 to the first two single
eigenvalues Xi° = 500.6, X20 = 3804, are depicted in Fig. 2; the corresponding
natural oscillations appear as standing waves. With A = 636.6, only one eigen-
function X(x), depicted in Fig. 2, corresponds to the coinciding eigenvalues
X1° = X2° = 2741; the values of this function in twelve points are presented
in column 1 of Table I; the corresponding natural oscillations appear as standing
waves. The double eigenvalue X1° = X2° = 2741 has also the adjoint function
Xm(x), corresponding to it, as well as the solution (14); the form of this function
is not determined by us.

With A > 636.6 the first two eigenvalues X10, X2° become complex conjugated
numbers. Figure 3 depicts the real (on the left) and imaginary (on the right)
parts of the complex eigenfunction X(x), corresponding to the first eigenvalue
X1° = 2866 — 1 772.7 at A = 700 and to the first eigenvalue X1° = 137,511 —
i 206,656 at  A = 20,000. The values ReX(x), ImX(x) for  A = 700 are given in
columns 2 and 3, and for A = 20,000 in columns 4 and 5 in Table I.

Figures 4 and 5 depict the functions IX(x)1, Cx), computed according to
Eq. (19) (each function IX(x) I was additionally normalized). The corresponding
values of the frequencies w = p2 (.02 = P2 + 1g2, computed according to
the formula (13) for the case X = X° [see designations (9)], are given in Table II
(q2 = —0•

The data in Fig. 5 and Table II show that the flutter (pl > 0) is realized as
waves (20), traveling in the direction of the negative axis x (downward with
the flow, ql > 0); the amplitude of the waves traveling toward the flow (q2 < 0)
attenuates (p2 < 0). The shape w(x, t), which is assumed by the wave travel-
ing downward with the flow (q, > 0) [Eq. (20)] at the instants

	

t = —27r •  —tit,  = 0, » • , 39
ti 40

.630
h• 0

o

Fig. 2.
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* I * 2 * 3 0 4 P5

0.0 0 0 0 0 0

0.0 1 0.0048 0.0047 -0.0036 0.0305 -0.0354

0. 1 U.333 0.3347 -0.2498 I -0.6780

0.2 0.8303 0.8201 -0.5852 0.5904 0.5065

0.3 I I -0.6442 -0.227 0 0.4213

0.4 U.7983 0.8293 -0.4324 -0.2181 -0.0935

0.5 0.4216 0.4892 -0.1183 0.0268 -0.0978

0.6 0.0920 0.1792 0.1046 0.0403 0.0054

0.7 -0.0753 0.0027 0.1715 -0.0003 0.0143

0.8 -0.0904 -0.0433 0.1210 -0.0041 0.0049

0.9 -0.0352 -0.0208 0.0388 -0.0002 -0.0008

1.0 0 0 0 0 0


Telsaga 2

EN 0  10 20 30 4 0 50

p,(700) 7.2 2.2 -2.7 -7.6 -12.3 -17.0

ol,(700) 54.0 53.8 53.1 51.9 50.2 48.0

pl(700) -7.2 -12.2 -17.5 -22.4 -27.7 -33.0

pi(20000) 235.4 230.4 225.4 220.4 215.4 210.6

ii(2000p) 439.2 439.2 439.2 439.0 438.7 438.6


pl(200CD) -235.4 -240.4 -245.4 -250.4 -255.4 -260.6

R• X ix) ire X 1)0

A • 20,000

0 i 0 X

A• 700

Fig. 36.

"x,

X

Fig. 4.
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is presented for .1 = 700 in Fig. 6 (in =  0-9), Fig. 7 (In =  10-19), Fig. 8  (nt =

20-29), Fig 9 (in =  30-39); for the convenience of comparing the different

shapes (20) the multiplier ePt was dropped. Analogous results for .1 = 20,000

are represented in Figs. 10-13. A visual representation of the character of

traveling waves is given by a multiplication film, obtained by means of sequential

exposure of curves shown in Figs. 6-13.
The character of the theoretically obtained traveling waves, whose maximum

amplitude shifts sharply toward the rear boundary of the plate with rising

velocity _1, explains the results of the experiments," in which the destruction of

the panels due to flutter always started at the rear boundary.

Attention is drawn to the large difference in the distriluition of amplitudes of

the traveling waves (20), satisfying clamped edge conditions, and monochro-

matic waves, Eq. ( 21), which do not satisfy the clamped boundary conditions,

A • 700

21

2
4 0

m • 20, 21,, 29

A.100
W (i ,t)2Trm

t • —
q 40

m.30, 31, , 39
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33 31




31 30
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X 21,

o 24

25

26

27

30 7
28 31

36

32

35

29 33
34

Fig. M. Fig. 9.
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but which, nevertheless, are employed in some investigations of the flutter of

plates and shells. It seems probable that this circumstance is not related to the

character of the aerodynamic theory applied.

The authors express deep gratitude to I. S. Berezin for his offer of the oppor-

tunity of conducting the necessary computations on the "Strela" computer.

The authors are also grateful to V. N. Aleksanova, L. V. Borshchova, and K. K.

Livanov for their assistance in preparing the manuscript and to V. V. Bogatyrev

for taking the multiplication fihns.
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